

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F Course: B.Tech Semester: 3rd Faculty name: AKANSHA

INDEX

<u>S.NO.</u>	<u>CONTENTS</u>	Page No.		
1	Focal Points	02		
2	Teaching Methodology	03		
3	Syllabus as per MDU	04		
4	Lesson Plan	05		
5	Text Books and references	08		
6	Assignments	09		
7	Monthly Report	Front		
8	Attendance Sheet	Front		
9	Previous Year Question Paper			

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F

Course: B.Tech Semester: 3rd Faculty name: AKANSHA

FOCAL POINTS

- **1.** The main objective in the very beginning classes of this subject is to provide basis knowledge regarding this subject.
- 2. After that we will move to our university syllabus. We will start

from section one.

- **3.** Laboratory Experiments will be conducted regularly (one lab per week).
- **4.** Group discussion will be organized to remove hesitation of students.
- Website links will be provided to student for getting recently developed fundamentals related to subject.
- 6. Regular class tests will be conducted to check the performance of students.
- **7.** We will finish the entire syllabus within designed time duration, so that we may get time for revision work.
- 8. All the sections of syllabus will be given equal and maximum
- **9.** Class room as well as power point presentations will be taken from students regularly.
- **10.** Student Doubts will be cleared by managing some extra classes.
- **11.** Stress will be given on practical and field knowledge , which will be the master success key for student.

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F

Course: B.Tech Semester: 3rd Faculty name: AKANSHA

TEACHING METHODOLOGY

COURSE OBJECTIVE

A complete study about all the properties of fluid and every law involved in it , is called fluid mechanics. The main objective of this subject is to provide knowledge about flow of fluids . that is liquids and gases.

METHODOLOGY

The Procedure will be lectures, presentations, Tutorials, Tests, assignments of class work and Practicle Labs..

ACHIEVEMENT

At the end of semester, students will have a basic knowledge of Fluid, its basic properties.

EVALUATION

Besides the semester end – examination, the students will be continuously assessed during the course on the following basis

- i. Mid Term Examinations 30 Marks
- ii. Internal Assessment 20 Marks (Assignments +Attendance)
- lii End Semester Examination 100 Marks

Total: 150 Marks

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F

Course: B.Tech Semester: 3rd Faculty name: AKANSHA

SYLLABUS AS PER MDU

SECTION-A

Unit-I: Introduction: Fluid properties, mass density, specific weight, specific volume and Specific volume and specific gravity, surface tension, capillarity, pressure inside a droplet and bubble due to surface tension, compressibility, viscosity, Newtonian and Non-Newtonian fluids, real and ideal fluids.

Unit-II: Kinematics of Fluid Flow: Steady & unsteady, uniform and non-uniform, laminar & turbulent flows, one, two & three dimensional flows, stream lines, streak lines and path lines, continuity equation in differential form, rotation and circulation, elementary explanation of stream function and velocity potential, rotational and irrotational flows, free and forced vortex flow, graphical and experimental methods of drawing flow nets.

SECTION-B

Unit-III: Fluid Statics: Pressure-density-height relationship, gauge and absolute pressure, simple differential and sensitive manometers, two liquid manometers, pressure on plane and curved surfaces, centre of pressure, Buoyancy, stability of immersed and floating bodies, determination of metacentric height, fluid masses subjected to uniform acceleration

SECTION-C

Unit-IV: Dynamic of Fluid Flow: Euler's equation of motion along a streamline and its integration, limitation of Bernoulli's equation, Pitot tubesturim , veneter, Orficemeter, flow through orifices & mouth pieces, sharp crested weirs and notches, aeration of nappe.

Unit-V: Boundary layer analysis: Boundary layer thicknesses, boundary layer over a flat plate, laminar boundary layer, and turbulent boundary layer, laminar sub -layer, smooth and rough boundaries, local and average friction coefficient, separation and its control.

SECTION-D

Unit-VI: Dimensional Analysis and Hydraulic Similitude: Dimensional analysis, Buckingham theorem, important dimensionless numbers and their significance, geometric, kinematic and dynamic similarity, model studies, physical modeling, similar and distorted models.

Μ	ERI
COI	LEGE

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F

Name of the Faculty	:	Ms AKANSHA
Discipline	:	Civil Engineering
Semester	:	3 rd
Subject	:	FM-1, CE-205-F
Lesson Plan Duration	:	15 Weeks (From August 2018 to November 30)
Work load (Lectures/Practical)		
Per week (in hours)	:	Lectures-04, Practicals-02

WEEK	THEORY		PRACTICAL	
	LECTURE	TOPIC (including assignment /test)	PRACTIC	TOPIC
	DAY		AL DAY	
1 ST	1 st	Introduction of Fluid properties	1 st	Verification of
	2 nd	Mass density, specific weight, specific		Bernoullis
		volume and Specific volume, Specific		Theorem
		gravity, surface tension, capillarity		
	3 rd	Pressure inside a droplet and bubble		
		due to surface tension, compressibility,		
		viscosity		
	4 th	Newtonian and Non-Newtonian fluids		
2 ND	5 th	Kinematics of Fluid Flow - Steady &	2 nd	
		unsteady, uniform and non-uniform		
	6 th	Laminar & turbulent flows, one, two &		
		three dimensional flows		
	7 th	Stream lines, streak lines and path		
		lines		
	8 th	Continuity equation in differential		
		form, rotation and circulation,		
3 rd	9 th	Elementary explanation of stream	3 rd	Calibration of V
		function and velocity potential,		notch
		rotational and irrotational flows		
	10 th	Free and forced vortex flow		
	11 th	Graphical and experimental methods		
		of drawing flow nets		

Session: 2018-2019

Department: Civil Engineering Subject: FM-1, CE-205-F

		-		
	12 th	REVISION &		
		TEST FOR SECTION- A		
4 th	13 th	UNIT-III Fluid Statics- Pressure-density-	4 th	Calibration of
		height relationship, gauge and		Rectangular
		absolute pressure		Notch
	14 th	Simple differential and sensitive		
		manometers, two liquid manometers		
	15 th	Pressure on plane and curved surfaces,		
	46	centre of pressure		
	16 th	Buoyancy, stability of immersed and		
th	th	floating bodies	_th	
5"	17'''	Determination of metacentric height,	5'''	Calibration of
		fluid masses subjected to uniform		Trapezoidal notch
	4 oth			
	18			
	co th	IEST FOR SECTION-B		
	19	Dynamic of Fluid Flow-Euler's		
	ao th	Equation of motion along a streamline		
	20	Euler's equation of motion along a		
cth	24 st	Euler's equation of motion along a	cth	Determination of
6	21	ctroamline and its integration	6	Determination of
	aand	Bornoulli's equation		height
		Bernoulli's equation,		
	23 ⁻²	Limitation of Bernoulli s equation,		
	24	Bernoulli's equation's principle, law		
th	o = th	and assumptions	_th	
7	25	Pitot tubesturim diagram and theory	1	
	26'''	Veneter, its definition, uses and		SESSIONAL-I
		working		EXAMINATION
	27''	Orficemeter, its use and working		
	28'''			
8 th	29 th	Flow through orifices	8 th	Determination of
	30 th	Flow through mouth pieces		coefficient Cd, Cv
	31 st	Difference between notches and weirs		and Cc
	32 nd	Sharp crested weirs and notches		
		definiton		
9 th	33 rd	Sharp crested weirs and notches their	9 th	Calibration of
		equations and diagrams		Venturimeter
	34 th	Aeration of nappe, its need and		
		definition		
	35 th	Boundary layer analysis introduction		
	36 th	Boundary layer thicknesses definition		
		and theory		

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F

10 th	37 th	Boundary layer over a flat plate	10 th	Calibration of
	38 th	Laminar boundary layer		Orifice Plate
	39 th	Turbulent boundary layer,		
	40 th	Laminar sub -layer		
11 th	41 st	Smooth and rough boundaries	11 th	Determination of
	42 nd	Local and average friction coefficient		surface tension of
	43 rd	Boundary separation and its control		liquids
	44 th	REVISION &		
		TEST FOR SECTION-C		
12 th	45 th	Dimensional Analysis and Hydraulic	12 th	
		Similitude: Dimensional analysis		
	46 th	Buckingham theorem		
	47 th	Important dimensionless numbers and		
		their significance		
	48 th	Geometric, kinematic and dynamic		
		similarity		
13 th	49 th	Model studies	13 th	
	50 th	Physical modeling		SESSIONAL-II
	51 st	Similar and distorted models		EXAMINATION
	52 nd	REVISION OF UNIT-I,II		
14 th	53 rd	REVISION OF UNIT-II,III	14 th	Study the
	54 th	REVISION OF UNIT-III,IV		properties of
	55 th	REVISION OF UNIT-IV,V		vortex flow
	56 th	REVISION OF UNIT-V,VI		
15 th			15 th	
		PRE-UNIVERSITY		PRE-UNIVERSITY
		FXAMINATION		FXAMINATIONS
		4		

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F Course: B.Tech Semester: 3rd Faculty name: AKANSHA

Text books & References:

Hydraulic and Fluid Mechanic by P.N.Modi & S.M.Seth

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F Course: B.Tech Semester: 3rd Faculty name: AKANSHA

ASSIGNMENTS

Assignment – I

- 1 Define a Fluid.
- 2 Fluid Mechanics.
- 3 Specific Gravity.
- 4 Specific Volume.
- 5 Cappilarity
- 6 Pressure Inside a hollow bubble.
- 7 Viscosity

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F Course: B.Tech Semester: 3rd Faculty name: AKANSHA

Assignment – II

- 1. What is the difference between an ideal fluid and a real fluid.
- 2. What do you mean by absolute pressure, gauge pressure and atmospheric pressure?
- 3. What is a venturiemter? Derive an expression for discharge through a venturimeter?
- 4. Explain various head losses in the flow through a pipeline.
 - i. Steady and unsteady flow
 - ii. Uniform and non-uniform flow in the case of open channels?
- 5. Explain giving neat line diagram, the construction and working of a reciprocating pump. Why it is called a positive displacement pump?
- 6. Why a mouthpiece is preferred to an orifice? Obtain an expression for time of emptying a tank through an orifice provided at its bottom.

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F Course: B.Tech Semester: 3rd Faculty name: AKANSHA

Assignment – III

- 1. Pressure-density-height relationship.
- 2. Two liquid manometers.
- 3. Fluid masses subjected to uniform acceleration
- 4. Buoyancy, stability of immersed and floating bodies
- 5. Graphical and experimental methods of drawing flow nets
- 6. Pressure on plane and curved surfaces

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F Course: B.Tech Semester: 3rd Faculty name: AKANSHA

Assignment – IV

- 1. Euler's equation of motion along a streamline and its Integration
- 2. Limitation of Bernoulli's equation
- 3. Boundary layer over a flat plate
- 4. Dimensional analysis, Buckingham theorem
- **5.** Dimensional Analysis and Hydraulic Similitude: physical modeling, similar and distorted models.
- 6. DEFINE: venturimeter, Orficemeter, flow through orifices & mouth pieces.

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F Course: B.Tech Semester: 3rd Faculty name: AKANSHA

Assignment – V

- 1. Newtonian and Non Newtonian fluids, real and ideal fluids.
- 2. DEFINE: mass density, specific weight.
- 3. DEFINE: Steady & unsteady, uniform and non-uniform, laminar & turbulent flows
- 4. Explain elementary explanation of stream function and velocity potential.
- 5. Define rotational and irrotational flows, free and forced vortex flow

Session: 2018-2019 Department: Civil Engineering Subject: FM-1, CE-205-F